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NOMENCLATURE 

surface area of object [ft’] : 
Biot number, hd,/k,, 
specific heat of coating material [Btullb’ F] 

specific heat of object [Btu/lb’F] : 
convective heat-transfer coefficient [Btuihft” F] : 
thermal conductivity of coating material [Btu’ 

hft F] . 
half thickness of object [ft] : 
mass of object [lb], L&p,,: 

time [h] 

temperature [ F] : 
softening temperature of coating material [ F] 

object temperature [-F] : 
initial object paramater [ F] : 
position coordinate measured from wall [ft] : 
dimensionless parameter, 6,/L: 
dimensionless parameter, p,c,!p,c,,. 

Greek symbols 

coating thickness [ft] : 
final coating thickness for constant wall temperature 

[ft], k,(T,,, - T,‘,).:h(T;, - T,): 
final coating thickness for falling object tempera- 

ture [It] : 
dimensionless coating thickness, 6/S,: 

dimensionless final coating thickness, 6, /6,: 

dimensionless temperature, (T- T,)‘tT,, ~ T,): 

dimensionless time, k, t/p,c,6~ : 
density of coating material [Ibift”] : 
density of object [Ib/ft”]. 

INTRODUCTION 

WHEN a hot object is dipped in a bed of tluidized plastic 

powder, a film of fused plastic coating will be formed on 
its surface. The coating thickness depends on the object 
temperature, the fusion temperature of the powder. the 

immersion time in the bed, the physical properties of the 

object and the powder, as well as on the heat content of the 

object. 

If the object possesses a very large heat content, it can be 

considered as an infinite heat source, and its temperature 

could be taken as constant during the coating process. The 

case of constant wall temperature fluidized bed coating was 

analyzed by Gutfinger and Chen [ 1, 21. Methods for 

determining the final coating thickness. as a function of the 

different parameters and time, were devised. 

In reality. the object possesses a finite heat capacity and its 

temperature drops during the coating process. This implies 

that the previous results obtained with a constant wall 

temperature will be the upper bound on the coating thickness. 

and that in reality smaller coating thicknesses will be 

obtained at finite times. 

In this investigation the problem of tluidized bed coating 

of low heat content objects is analysed as a heat-transfer 

problem with a moving boundary. Thus it is an extension 01 

the previously mentioned analysis of the constant wall 

temperature process. The final results obtained enable one 

to calculate the coating thickness of low heat content 

objects. 

ANALYSIS OF THE PROBLEM 

Consider a tlat plate with an area A, and half thickness L. 
which is dipped vertically in a fluidized bed. The object is 
initially at a temperature, T,,, which is higher than the 

softening temperature of the coating material, T,. The plastic 

coating material in contact with the object surface will melt 
and begin to form a layer on the plate. The process now 
involves the transfer ofheat from the plate to the continuously 

growing film. and then into the fluidized bed. 

Usually the oblect is metallic possessing a high thermal 

conductivity and a finite heat capacity, therefore its tempera- 
ture will remain uniform but decrease with time, i.e. the body 

is treated as a lumped parameter system. Heat from the plate 
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is transferred through the coating film whose properties, 

pc, c,, k,, are assumed to remain constant during the process. 

The surface temperature of the coating film is assumed to 

be constant and equal to the melting or softening temperature 

of the coating polymer, Tm It is also assumed that the molten 

plastic does not flow down the wall. The latter assumption is 

reasonable in view of the high viscosity of molten polymers 

and short duration of the coating process. Although the 

rate of heat convected from the coating surface into the bed 

is obviously dependent on the tluidization conditions and 

the temperature gradient, in this analysis the heat transfer 

coefficient between the plate and the fluidized bed is assumed 

to be independent of location and direction, and is taken as 

constant during the coating. The temperature within the 

iluidizd bed, T,, is assumed to be uniform and constant. 

With these assumptions, the one dimensional heat con- 

duction problem with a moving boundary and variable wall 

temperature is described by the following equations: 

(1) 

m 0) = T,, (2) 

m, t) = L(r) (3) 

T(6, t) = T, (4) 

611, 

y (T,, - T,(t)) = ht(T, - T,) + prc, 
w s 

(T- T,,) dx (5) 

0 

_k 57 
c 2-Y v-8 

= h(T, - T,) + P,C,(K - 7,); (6) 

6(O) = 0. (7) 

Equation (6) is the heat balance at the surface of the 

coating film. The latent heat of fusion of the polymer is not 

taken into account. This is due to the fact that polymers 

with a crystalline structure, that possess a heat of fusion, are 

unsuitable for coating. On the other hand, for polymers not 

possessing a latent heat of fusion, the heat capacity in the 

softening region is not constant and one, therefore, has to 

work with heat capacities averaged over the temperature 

range studied. For cases where the latent heat cannot be 

neglected, there is no inherent ditliculty to include it in the 

present analysis. However, this would add an additional 

parameter to the problem Equation (5) expresses the fact 

that the heat loss by the body during the time interval (0, t) 

is equal to the heat transferred to the fluidized bed, plus the 

heat consumed in bringing the coating film temperature 

from its initial value, T,, to its final value T(x, t). 

We rewrite now the equations in dimensionless form by 

defining a dimensionless coordinate, time, temperature, and 

coating thickness, respectively: 5 = x/6: ‘I = k,r/p,c&: 

e = (T- T,)/(T,, - T,); A = 6/S,. 

The final coating thickness, 6, is the one obtained from 

the solution of the coating problem for a constant object, 

or wall temperature. The expression for this final coating 

thickness was derived (l), (2), as: 

kc Lo - L 
6,=--- 

h T, - I, 

In the present investigation one does not assume a constant 

object temperature. Here it will drop with time as the film 

thickness grows. Thus, the final thickness in our case will 

be lower than the one given by equation (8). The latter can 

be considered to be the upper bound. How closely this 

upper bound is approached with a falling wall temperature 

will be expressed by the dimensionless thickness, A. 

Equations (l)-(7) are rewritten in dimensionless form as: 

(9) 

8, = 1 - ZYBi0,z - ZYA [ 0 d< (13) 

ae 
-~(l~)=RidB,+ff?,~~ (14) 

A(0) = 0 (15) 

where Bi = h6,/k, is the Biot number based on 6, and 

z = PeGIP,G%.3 Y = 6,/L are dimensionless parameters. 

Substituting 6, from equation (S), one can express the Biot 

number as : 

Bi = (Bwo - e,)/e,. (16) 

Equation (9), first derived by Landau [3], points out quite 

clearly the non-linear characteristic of the differential equa- 

tion for the heat transfer problem with a moving boundary. 

The above set of differential equations (9H15) is solved 

by applying an integral technique similar to the one used 

by Goodman [4], Savino and Siegel [5, 61, Guttinger and 

Chen [l, 21 and Elmas [7]. 

Integrating twice equation (9) with the proper boundary 

conditions and following the method of Siegel and Savino [5] 

one obtains 

This equation is the expression for the instantaneous 

temperature distribution in the coating film. Rewriting 
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equation (17) for the film surface (5 = 1) and integrating 
with respect to time we obtain : 

118) 

Equation (18) yields an expression for the change of the 
coating thickness with time as a function of the wall tempera- 
ture, Q,, and the film temperature profile, 0. These are 
given by equations (13) and (17), respectively. The problem 
is now reduced to the solution of three simultaneous 
equations, (13X (17) and (Is), which will provide expressions 
for B = 6 (&T), 8, = ff, (r), and d = d (r). A similar approach 
to Nuidized bed coating has been taken by Elmas [73. 
However, Elmas failed to realize the coupling between the 
heat transfer inside the coating film to that of the object. 
In his case instead of equation (13). he assumes an 
exponential decay of the wall temperature with the square 
root of time, and a linear temperature variation in the 
coating, Even with these simplifications Elmas stops short 
of solving his equations except for the special case of constant 
wall temperature previously reported by Gutfinger and 
Chen [I]. 

The system of three simultaneous equations seems quite 
difhcult to solve analytically. In equations (18) and (13) 
giving the coating thickness and the wall temperature, 
respectively, the film iemperature distribution is under the 
integrai sign. Thus. one will not err appreciably in repre- 
senting it by a second degree polynominal 

0 = a + b(t - 5) + ~(1 - 5)’ . (19) 

The coefficients 4 b and c, which are functions of time, are 
evaluated with the help of the boundary conditions re- 
sulting in the following: 

tl = 0, + ;@_ 
i 

Bid - 2 

i- 8, - 8, 
- 2)* + gg. (1 -5) 

m 

- f 8, Bid - 2 
i 

x (1 - 512. m) 

This temperature profile is substituted in equations (13) 
and (181, integrations performed, and the following final 
equations are obtained for the wall temperature and coating 
thickness 

ZYA 
#,- 1 -ZYBif?,s-y 

x i 68, + &Bid + 48, + 8, / 1 (Bid - 21” 
v s 

and 
(f -H, 

+ 8 --? rr 111 11 

A’ 80, f 0,Bid + 20, 

+ Qm - 2)2 + 8 !!?;A- 11 m 

=249(0, - 8, - BiH,d)dr. 

215 

(211 

(221 

The set of two simultaneous equations for 8, and d was 
solved by an iterative numercial method using an IBM 
370D65 computer. 

RESULTS 

Typical results are plotted in Figs. 1 and 2. The remainder 
of the ti8ures were eliminated in the process of converting 
this paper into a shorter communication upon the I-cquest 
of a space-conscious reviewer. 

Figure 1 provides the coating histories at different 
coating conditions, whereas Fig. 2 shows the effect of the 
coating parameters on the final thickness and wall tempera- 
ture. 

Inspecting equations (21) and (22) that define the problem, 
one notes that the dimensionless coating thickness, d, is a 
function of dimensionless time, r, melting temperature, 
fl,,,. and the product, ZY 

A = h(r:&,ZY). (231 

When plotting 4 vs. z, only one of the parameters can be 
varied while the other one has to be kept constant. The 
product ZY which appears in equation (21) always comes 
together. Expressed in terms of the parameters of the pro- 
blem, it can be written as: 

(24) 

The reason for the parameters 2 and Yappearing together 
is due to the fact that the coated object was taken as a 
lumped parameter system. 

Figure 1 plots the dimensionless coating thickness and 
wall temperature as a function of the dimensionless time, 
t, for 8, = @5 and the product ZYas a parameter. 

As seen, for values of ZYsmaller than 0.1 the final thickness 
can be approximated by the constant temperature solution 
with an error of less than 20 per cent. 

Figure 2 provides a plot of the dimensionless final 
thickness and temperature as a function of ZY with & 
as a parameter. This figure is the one that the practicing 
coating technologist will be mostly interested in, as it 
shows the highest coating thickness possible for a given set 
of coating parameters as well as the drop in wall temperature 
at the point where the final thickness is achieved 
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FIG. 1. Dimensionle~ coating thickness, 4. and dimensionless 

wall temperature, Q,, as a function of ~~mensionle~ time, 7, 

for various values of the parameter 2X f?, = 05. The upper 

curves represent Bw, and the lower ones ~5. 

FIG. 2. Plot of final dimensionless coating thickness, A,., 

and of final dimensionless wall temperature, B,,, vs. 

dimensionless parameter, Zl: for various values of the 

dimensionle~ meltjng temperature ff,,,. 

REFERENCES 
1. C. GUTFINGW and W. H. CHEN, Heat transfer with a 

moving boundary-application to fluidized bed coating. 
Int. J. Heat Mass Transfer 12, 1097-1108 (1969). 

2. C. GUTFINGER and W. H. CHEN. An approximate theory 
of fluidized bed coating, Chem. Engng Prog. Symp. 
Ser. 101,645, 91-100 (1970). 

3. H. G. LANDAU, Heat conduction in a melting solid, 
Q. Appl. Math. 8, 81 (1950). 

4. T. R. GOODMAN, The heat-banana integral and its 
application to problems invoI~ng a change of phase, 
Trans. Am. Sot. Mech. Engrs 80. 335-342 (19.58). 

R. SIEGB_ and J. M. SAVINO, An analysis of the transient 
soiiditication of a flowing warm liquid on a convectively 
cooled wall, Proc. 3rd Int. Heat Transfer Conf. Vol. 4. 
141-151, ASME (1966). 
j. M. SAV~NO and R. SIEGEL, An analytical solution for 
solidification of a moving warm liquid nnto an iso- 
thermal cold wall, Znt. J. Heal Mass jlramjer 12, 80.~ 809 
(1969). 
M. ELMAS, On heat transfer with moving boundary, 
Int. J. Heat h4ass Transfirr 13. 1625-1627 (1970). 


